

Olympiades nationales de mathématiques 2019

Seconde partie de l'épreuve Exercices académiques

Classes de première (série S)

Académies de Caen et de Rouen

Les calculatrices sont autorisées.

Il est conseillé aux candidats qui ne pourraient formuler une réponse complète à une question d'exposer le bilan des initiatives qu'ils ont pu prendre.

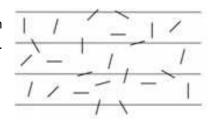
Les énoncés doivent être rendus au moment de quitter définitivement la salle de composition.

Seconde partie de l'épreuve

Exercice académique numéro 1

Jeu d'aiguilles

On s'intéresse, dans cet exercice, à l'expérience qui consiste à jeter au hasard un grand nombre de fois une aiguille sur un parquet composé de planches parallèles. On admettra qu'il s'agit d'une situation d'équiprobabilité.



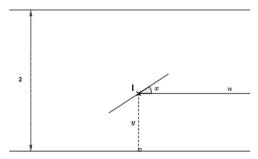
- L'unité de longueur choisie dans cet exercice est celle de l'aiguille.
- Toutes les planches du parquet ont pour largeur 2 unités.

L'objectif de l'exercice est d'estimer la probabilité p de l'événement C : « l'aiguille tombe à cheval sur une rainure du parquet ».

Modélisation

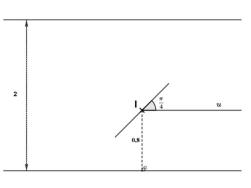
Les rainures du parquet sont assimilées à des droites parallèles et l'aiguille à un segment de longueur 1.

La position de l'aiguille sur une planche donnée est repérée par son milieu I et un couple $(x\,;y)$ de coordonnées définies de la façon suivante :



- x est la mesure exprimée en radian comprise entre 0 et π de l'angle formé par l'aiguille et la demi-droite [I;u) parallèle aux rainures du parquet ($voir\ figure\ ci-contre$);
- y est la distance entre le point I et la rainure du parquet la plus proche de l'aiguille ($y \in [0;1]$).

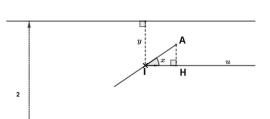
Ainsi, dans l'exemple ci-contre, l'aiguille est repérée par le point $I\left(\frac{\pi}{4};0,8\right)$.



1. On considère quatre positions de l'aiguille correspondant aux points P, Q, R et S suivants : $P\left(\frac{\pi}{2};0,4\right)$; $Q\left(\frac{\pi}{3};0,5\right)$; $R\left(\frac{3\pi}{4};0,2\right)$; $S\left(\frac{5\pi}{6};0,9\right)$

Pour chacune de ces situations, indiquer, en le justifiant, si l'événement C est réalisé ou non.

2. Soit I un point de coordonnées (x; y). I correspond à la position de l'aiguille représentée ci-contre.



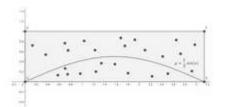
- a. Exprimer la distance AH en fonction de x.
- b. En déduire que l'événement C est réalisé si et seulement si :

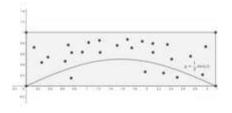
$$y < \frac{1}{2}\sin(x)$$

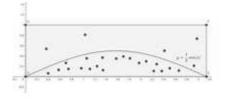
NUMWORKS

3. Dans cette question, on considère la configuration ci-contre présentant le résultat de l'expérience aléatoire consistant à jeter 25 fois une aiguille sur un parquet à planches parallèles.

Sur chacun des graphiques ci-dessous est représentée la courbe d'équation $y = \frac{1}{2}\sin(x)$, pour x compris entre 0 et π . Les points correspondant aux positions des 25 aiguilles présentées ci-dessus figurent sur un seul de ces graphiques. Quel est celui qui correspond à cette situation ? Justifier.







Graphique 1

Graphique 2

Graphique 3

4. On considère l'algorithme ci-dessous :

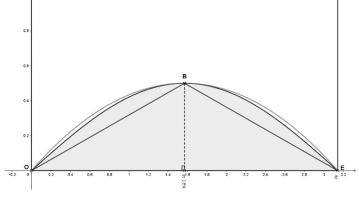
```
k \leftarrow 0
Pour i allant de 1 à n
x \leftarrow \text{valeur aléatoire dans } [0; \pi]
y \leftarrow \text{valeur aléatoire dans } [0; 1]
Si y < \frac{1}{2} \sin(x)
k \leftarrow k + 1
Fin Si
Fin Pour
f \leftarrow k/n
```

Lorsque l'on exécute cet algorithme pour $n=10\,000$, la variable f contient 3 152. Quelle interprétation peut-on en donner ?

5. Dans un repère orthogonal donné, on considère le domaine du plan représenté ci-dessous (partie colorée), délimité par la courbe d'équation $y=\frac{1}{2}\sin(x)$, l'axe des abscisses et les droites d'équation x=0 et $x=\pi$ (partie colorée). On considère également le rectangle OEFG où $O(0\,;0)$, $E(\pi\,;0)$, $F(\pi\,;1)$ et $G(0\,;1)$.

La probabilité de l'événement ${\it C}$ est égale au quotient de l'aire de ce domaine par l'aire du rectangle OEFG.

D'après la formule d'Archimède, l'aire du domaine situé sous l'arc de parabole représenté ci-contre passant par 0, B et E est égal aux quatre tiers de l'aire du triangle OBE.



En déduire un encadrement de la probabilité de l'événement C.

Exercice académique numéro 2

Des carrés et des cases

Pour répondre aux questions de cet exercice, on pourra, si besoin, colorier les cases des carrés figurant en annexe (à rendre avec la copie).

Définition : dans un carré C composé de $n \times n$ cases, on appelle **sous-carré** $m \times m$ de C tout carré composé de $m \times m$ cases contenu dans C.

Exemple:

cases. C'

C' est un sous-carré 3×3 du carré C composé de 6×6 cases.

A. Un cas particulier

On considère, dans cette partie, un carré C composé de $S \times S$ cases et C' un sous-carré $S \times S$ du carré $S \times S$ cases et $S \times S$ cases

- 1. Combien existe-t-il de positions possibles de C' dans le carré C?
- 2. Disposer une case noire (ou plusieurs) dans le carré C figurant en annexe pour que **chaque** sous-carré C' contienne exactement une case noire.
- 3. Disposer des cases noires dans le carré C figurant en annexe pour que **chaque** sous-carré C' contienne exactement :
 - a. deux cases noires;
 - b. trois cases noires;
 - c. quatre cases noires.
- 4. Montrer que si l'on peut disposer des cases noires dans le carré $\mathcal C$ pour que chaque sous-carré $\mathcal C$ contienne exactement p cases noires, on pourra placer des cases noires dans le carré $\mathcal C$ pour que chaque sous-carré $\mathcal C$ contienne exactement 9-p cases noires.
- 5. Que peut-on en conclure quant au nombre de cases noires qui peuvent être contenues dans chaque sous-carré C d'un carré C ?

B. Généralisation

On considère dans cette partie, pour tout entier naturel k tel que $k \ge 2$:

- un carré \emph{C} composé de (2k+1) imes(2k+1) cases ;
- un sous-carré $(2k-1) \times (2k-1)$ du carré C, noté C'.
- 1. Combien existe-t-il de positions possibles de \mathcal{C}' dans \mathcal{C} ?
- 2. Justifier que, si p est un entier naturel tel que $p \le (2k-3)^2$, on peut disposer des cases noires dans C de telle façon que tout sous-carré C contienne exactement p cases noires.
- 3. En déduire que, si p est un entier naturel tel que $p \le (2k-3)^2$, on pourra placer des cases noires dans C pour que chaque sous-carré C contienne exactement $(2k-1)^2-p$ cases noires.

On souhaite démontrer dans cette partie que, pour tout entier naturel p tel que $p \le (2k-1)^2$, on peut disposer des cases noires dans C de telle façon que tout sous-carré C contienne exactement p cases noires.

- 4. Cette propriété est-elle vraie pour k = 2? Pour k = 3?
- 5. Montrer que, pour tout entier naturel k tel que $k \ge 4$: $(2k-1)^2 (2k-3)^2 \le (2k-3)^2$.
- 6. Conclure.

Exercice académique numéro 2 (des carrés et des cases) : annexe

