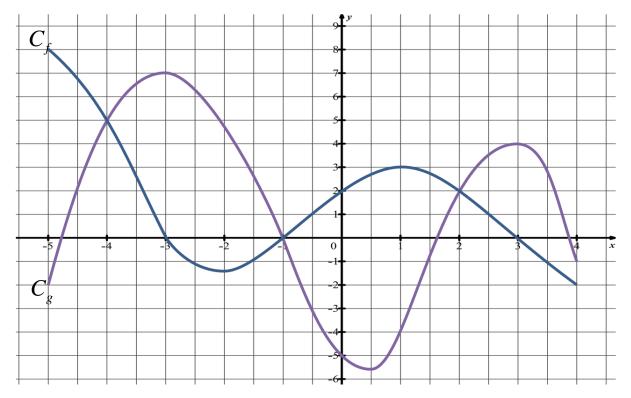
Numéro d'anonymat :	
---------------------	--

Lycée Augustin Fresnel – Mars 2025

Devoir commun de mathématiques en 2de

Durée: 2 heures

Recommandations


- Ce document est à rendre complété en fin d'épreuve.
- Le sujet comporte six exercices indépendants les uns des autres.
- Toutes les réponses doivent être placées dans les zones rectangulaires.
- Ne rien écrire dans les zones circulaires destinées à la notation.
- Ne pas défaire l'agrafe du dossier.
- La qualité et le soin apportés à la rédaction ainsi que la clarté et la précision des raisonnements seront pris en compte lors de la correction.
- L'usage de la calculatrice est autorisé.
- Aucune sortie ne sera autorisée avant la fin de l'épreuve.

					Partie réser	vée au correcteur
]	Note :	/ 40		
Appréciation	on					
•••••						•••••
г .	1. Fonctions	2. Calculs	3. Vecteurs	4.	5.	6.
Exercice	et lectures graphiques	numérique et algébrique	sans repérage	Proportions et évolutions	Fonctions affines	Variations
Exercice points				Proportions et évolutions		Variations
				Proportions et évolutions		

Exercice 1 – Généralités sur les fonctions

Dans cet exercice, f et g sont deux fonctions définies sur l'intervalle [-5; 4]. C_f et C_g désignent leurs courbes représentatives (voir figure ci-dessous).

À l'aide du graphique, répondre aux questions suivantes en entourant toutes les bonnes réponses.

1. La courbe C_f passe par le point ou les points de coordonnées :

a. (1; 3)

b. (3; 1)

c. (-0.5; 1)

d. (3; 4)

2. L'image de 1 par g est :

a. 3

b. -4

c. -0,5

d. 2,5

3. 0 a pour antécédent(s) par f:

a. -3

b. 2

c. 3

d. -1

4. L'équation f(x) = g(x) a pour solution(s):

a. -1

o. 2

c. 0

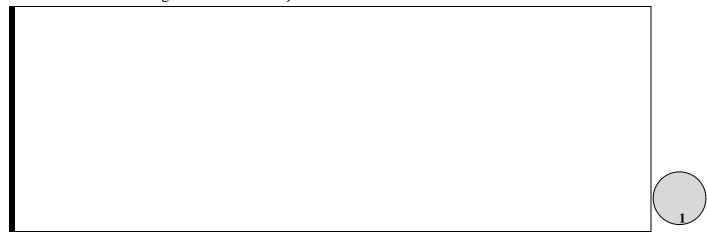
d. -4

5. L'inéquation f(x) > g(x) a pour ensemble de solutions :

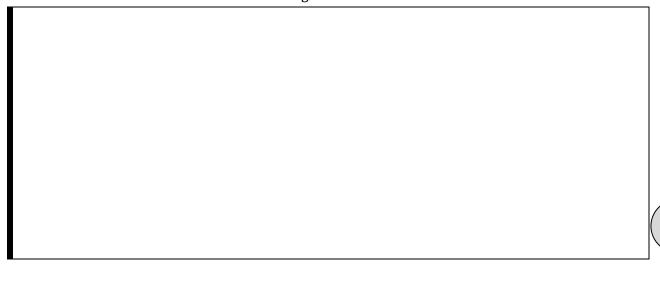
a. $\{-4; -1; 2\}$

b. $[-5; -4] \cup [-1; 2]$

c. $]-5; -4[\cup]-1; 2[$

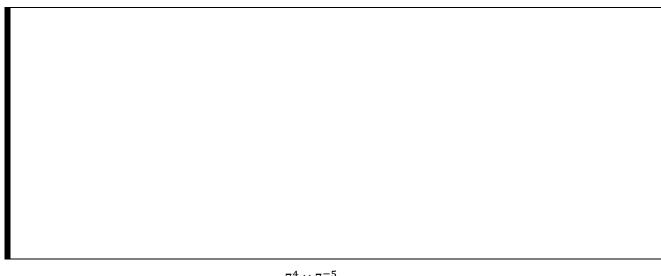

d. $[-5; -4[\cup]-1; 2[$

6.	L'inéquation	a(x)	< -2	a pour ensemble de solutions :
v.	L inequation	$g(\lambda)$		a pour chischiole de solutions.

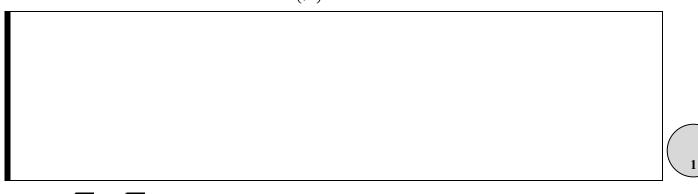

b.
$$\{-5\} \cup [-0.7; 1.3]$$

7. Donner le tableau de signes de la fonction f.

8. Donner le tableau de variation de la fonction g.

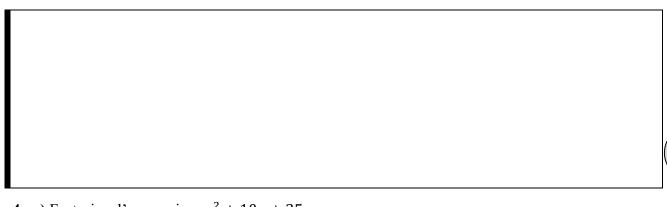

Exercice 2 – Calculs numérique et algébrique

Les questions 1 à 6 sont indépendantes.


Pour chaque calcul demandé aux questions 1, 2 et 3, écrire toutes les étapes de calcul.

1.
$$A = \frac{3}{5} - \frac{7}{5} \times \frac{4}{3}$$
.

Déterminer la valeur de A sous forme de fraction irréductible.

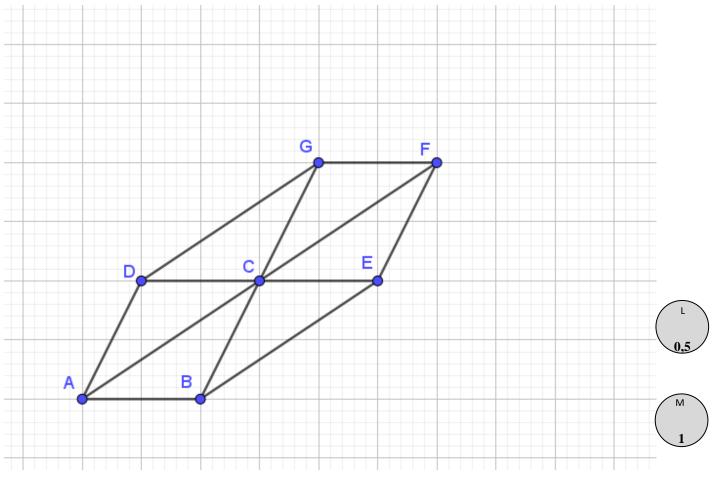


2. Déterminer l'écriture du nombre $B = \frac{7^4 \times 7^{-5}}{(7^3)^4}$ sous la forme 7^n où n est un entier relatif.

3. $C = \sqrt{75} - \sqrt{48}$.

Déterminer l'écriture de C sous la forme $a\sqrt{3}$ avec a un entier.

4. a) Factoriser l'expression $x^2 + 10x + 25$.



b) Factoriser l'expression $9x^2 - 16$.	
	0,5
5. Résoudre, dans \mathbb{R} , l'inéquation $-2x + 1 \ge 4x + 7$.	<u>_</u>
6. Dans un repère orthonormé, on donne les points A(-14; 17) et B(5; 11).	
a) Calculer les coordonnées du milieu I du segment [AB].	
h). Coloulor la valour avanta de la language AP	
b) Calculer la valeur exacte de la longueur AB.	
	1

Exercice 3 – Vecteurs sans repérage

Sur la figure suivante, les quadrilatères ABCD, ABEC, ACGD, EFGC, DCFG et BEFC sont des parallélogrammes.

1. Quelle est l'image du point G par la translation de vecteur \overrightarrow{DA} ?

0,5

2. Donner un vecteur égal à \overrightarrow{DG} .

Donner un vecteur egar a bu.

- **3.** Construire le point L tel que $\overrightarrow{CL} = \overrightarrow{AF}$.
- **4.** Construire le point M tel que $\overrightarrow{BM} = 2\overrightarrow{GF} + \overrightarrow{AD}$.
- **5.** En n'utilisant que des points de la figure, écrire les sommes suivantes sous la forme d'un seul vecteur (*aucune justification n'est demandée*) :

$$\overrightarrow{AB} + \overrightarrow{BC} = \dots$$
 $\overrightarrow{DC} + \overrightarrow{FE} = \dots$

$$\overrightarrow{DC} - \overrightarrow{FE} + \overrightarrow{GD} = \dots$$
 $\overrightarrow{CE} + \overrightarrow{CG} = \dots$

a) Prouver que $\overrightarrow{CM} = 2 \overrightarrow{CE}$.	
b) Que peut-on en déduire pour le point E ?	
	<u></u>

Exercice 4 – Proportions et évolutions

Partie A

En 1974, la Cigogne blanche était au bord de l'extinction et la France n'abritait plus que 11 couples nicheurs, un en Ille-et-Vilaine, un dans la Manche et 9 en Alsace. Grâce à plusieurs actions, notre pays compte désormais, en 2019, 5 000 couples dont 525 en Charente-Maritime.

1. Quelle est la part en pourcentage du nombre de couples de cigognes installés en Charente-Maritime en 2019 par rapport à la population totale des couples recensés ?

2. En France, les effectifs de cigognes blanches ont chuté d'environ 92 % entre 1961 et 1974. Face à ce déclin dramatique, des ornithologues et passionnés se sont mobilisés et ont mené des actions couronnées de succès.

Dans la phrase précédente, le pourcentage traduit-il une proportion ou une évolution ?

(
\ 0.5 /
0,5

Partie B

Les bénévoles d'une association assurent l'identification des cigognes nicheuses et le recensement des nids. Les nids sont construits sur différents supports : des pylônes, dans les arbres, des platesformes édifiées par les hommes ou sur des constructions.

Le tableau ci-dessous présente la répartition sur les années 2014, 2016 et 2019 selon la nidification.

	2014	2016	2019
Nids sur pylônes	33	33	67
Nids dans les arbres	37	75	
Nids sur plates-formes	39		40
Nids sur constructions	7		

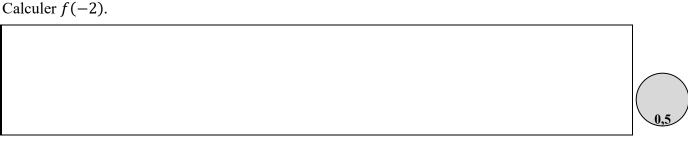
1. Calculer le nombre de nids recensés en 2014.

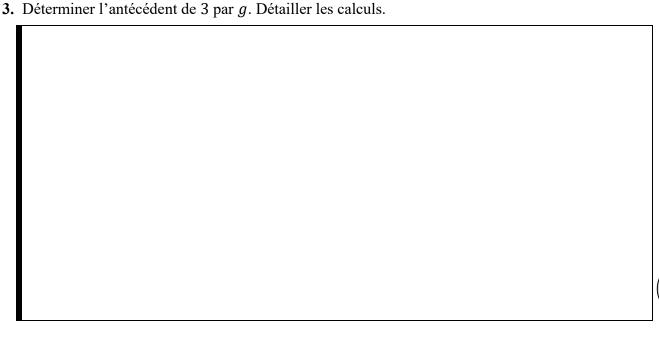
2. a) On sait, qu'entre 2016 et 2019, le nombre de nids dans les arbres a augmenté de 17,3 %. Calculer le nombre de nids dans les arbres en 2019. On arrondira à l'entier.	
b) On sait, qu'entre 2016 et 2019, le nombre de nids sur plates-formes a diminué de 2,5 %. Quel était le nombre de nids sur plates-formes en 2016 ? On arrondira le résultat à l'entier.	
 Calculer l'augmentation, en pourcentage, du nombre de nids sur pylônes entre 2016 et 2019. On donnera le résultat arrondi à l'unité. 	
	1
4. Le nombre de nids sur constructions a augmenté de 42,9% entre 2014 et 2016 puis a diminué de 70% entre 2016 et 2019.	
Déterminer l'évolution globale, en pourcentage, du nombre de nids sur constructions entre 2014 et 2019.	
	1,5

Exercice 5 – Fonctions affines

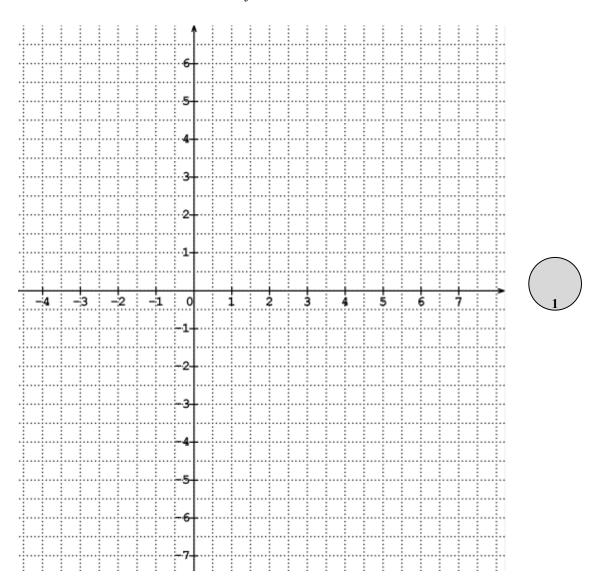

Les parties A et B peuvent être traitées indépendamment l'une de l'autre et x désigne une variable réelle.

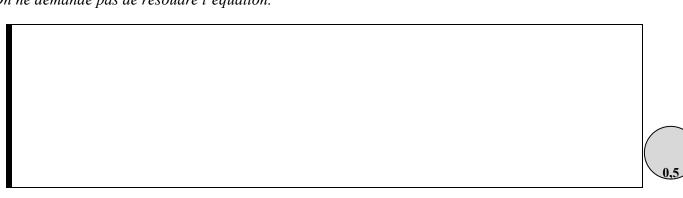
Partie A


On considère les fonctions définies par f(x) = 3x - 6 et g(x) = 4 - x.


On note C_f la courbe de f et C_g la courbe de g.

1. Donner, en justifiant, le sens de variation de f et de g.


2. Calculer f(-2).



4. Construire, dans le repère proposé ci-après, les courbes de f et de g.

Penser à identifier les courbes.

5. Quelle équation faudrait-il résoudre pour déterminer l'abscisse du point d'intersection de C_f et C_g ? On ne demande pas de résoudre l'équation.

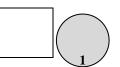
Partie B

On pose A(x) = (4-x)(3x-6) et $B(x) = -3x^2 + 18x - 24$.

1. Montrer que ces deux expressions sont égales.

2. Résoudre l'équation B(x) = -24.

a) Résoudre l'équation $A(x) = 0$.	
b) Dresser le tableau de signes de $A(x)$.	
c) En déduire les solutions de l'inéquation $A(x) < 0$.	


Exercice 6 – Variations de fonctions

Le tableau de variation d'une fonction f est le suivant :

х	-5	-3	0	4	8
f	-3	▼ 0		1	→ 0

1. Donner l'ensemble de définition de f.

2. Quel est le minimum de f? En quelle valeur est-il atteint?

3. Donner un antécédent de -3 par f.

4. Combien de solutions possède l'équation f(x) = 0?

5. Citer un intervalle sur lequel la fonction f est décroissante.

6. Résoudre l'équation f(x) = 4.

7. En justifiant à l'aide des variations de f, comparer si c'est possible les deux réels donnés. Si on ne dispose pas des informations suffisantes pour pouvoir conclure, le préciser.

a)
$$f(-2)$$
 et $f(-1)$

b)
$$f(-4)$$
 et $f(-2)$